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Abstract—Brain-Computer Interfaces (BCIs) have significantly
improved the patients’ quality of life by restoring damaged
hearing, sight and movement capabilities. After evolving their
application scenarios, from medicine to entertainment, the trend
of these interfaces is breaking new frontiers enabling new inno-
vative brain-to-brain and brain-to-the-Internet communication
paradigms. The increment in the possibilities offered by BCIs
generates an attractive terrain for attackers, since users’ personal
information and physical integrity could be under risk. This
article presents a comprehensive work to understand BCIs,
their software cybersecurity concerns and future challenges. We
initiate the article by reviewing the state-of-the-art of BCIs
from the availability, confidentiality, integrity, and safety risks
associated with their most well-known classifications. After that,
we review the existing architectural versions of the BCI life-
cycle and homogenise them in a new approach that overcomes
the limitations of the current ones. A survey of the cybersecurity
attacks affecting each phase of the BCI cycle is performed to
analyse the impacts and countermeasures documented in the
literature. Furthermore, new unexplored attacks concerning each
phase are presented as well. After that, we review documented
cyberattacks affecting the deployments of the BCI cycle, as well
as their impacts and countermeasures. Like in the BCI design,
new opportunities, in terms of cyberattacks and countermeasures,
missed by the literature, are documented. Finally, we reflect
on lessons learned, highlighting research trends and future
challenges concerning cybersecurity on BCIs.

Index Terms—Brain-computer Interfaces, BCI, cybersecurity,
privacy, safety

I. INTRODUCTION

Brain-Computer Interfaces (BCIs) emerged in the 1970s
with the goal of acquiring and processing users’ brain
activity to later perform specific actions over external
machines or devices [1]. After several decades of research,
this functionality has been extended by enabling not only
neural activity recording, but also stimulation [2], [3]. Fig. 1
describes the general components and processes defining a

c© 2019 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

common BCI cycle in charge of recording and stimulating
neurons. The clockwise direction, indicated in blue, shows
the process of acquiring neural data and the counterclockwise
represents the stimulation one, which is highlighted in red.
Regarding the neural acquisition, neurons interact with each
other producing neural activity, either based on previously
agreed actions, such as controlling a joystick, or generated
spontaneously (phase 1 of Fig. 1). This activity is acquired
by the BCI and transformed into digital data (phase 2). After
that, data is analysed by the BCI data processing system
to infer the action intended by the user (phase 3). Finally,
applications execute the intended action, enabling the control
of external devices. These applications are able to present
optional feedback to the users, which allows the generation of
new neural activity. On the other hand, the counterclockwise
direction of Fig. 1 starts in phase 4, where applications define
the intended stimulation actions to be performed. In phase 3,
this action is processed to determine a firing pattern containing
all the essential parameters required by the BCI to stimulate
the brain. Finally, the firing pattern is sent to the BCI, which
is in charge of stimulating specific neurons belonging to one
or more brain regions, and is dependent to the technology
used, as reviewed in Section II (step 2). In a nutshell, a
BCI can be a unidirectional or bidirectional communication
system between the brain and external computational devices.
Unidirectional communications is when they either acquire
data or stimulate neurons, on the other hand bidirectional
communications is when they perform both tasks [4].

From the cybersecurity perspective, BCIs are in an early
and immature stage. Cybersecurity has not been considered as
a critical aspect of BCIs until recent years, where terms such
as neurosecurity, neuroprivacy, neuroconfidentiality, brain-
hacking, or neuroethics have emerged [5]–[7]. Existing works
of the literature have detected certain cybersecurity attacks
affecting BCI integrity, confidentiality, availability and safety,
but they do not perform a comprehensive analysis and miss
relevant concerns [1], [8]–[11]. Furthermore, the expansion
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Fig. 1. General functioning of a bidirectional BCI. The clockwise flow
indicated with a blue arrow represents the neural data acquisition process,
while the counterclockwise flow represented with a red arrow models the
brain stimulation.

of BCI to new markets, e.g video games or entertainment,
generates great risks in terms of data confidentiality [1],
[8], [10], [11]. In this context, users’ personal information,
such as thoughts, emotions, sexual orientation or religious
beliefs are under threats if cybersecurity measures are not
adopted [7], [8], [10]. The technological revolution of recent
years, combined with movements such as the Internet of
Things (IoT), brings an acceleration in the creation of new
devices lacking cybersecurity standards and solutions based
on the concepts of security-by-design and privacy-by-design
[9]–[12]. This revolution also brings to reality disruptive
scenarios such as direct communications between brains,
known as Brain-to-Brain (BtB) or Brainets [13]–[16], and
brains connected to the Internet (Brain-to-Internet (BtI)),
which will require important efforts from the cybersecurity
prism.

Once summarised the functioning of BCIs and their cyber-
security status, the scope of this paper lies on analysing the
cybersecurity issues of software components that intervene in
the processes, working phases, and communications of BCIs.
In addition, this work considers the cybersecurity concerns
of infrastructures, such as computers, smartphones, and cloud
platforms, where different BCI architectures are deployed. It
is also important to note that this article does not focus on
the physical impacts that cybersecurity threats might have on
humans. With the aim of providing an overview of the main
topics considered in this work, Fig. 2 shows the distribution of

the 198 works cited by this article. They are classified into four
main categories: BCI, Cybersecurity, Network communica-
tions, and IoT. Intersections of categories are also considered
to provide a better understanding. In summary, as can be seen
in the number of references, the article is mainly focused on
BCI, Cybersecurity and Network communications.
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Fig. 2. Classification and distribution of the article references.

Aligned with the aspects described above, to the best
of our knowledge, this article is the first work that
exhaustively reviews and analyses the BCI field from the
cybersecurity and safety points of view. In this context,
Section II reviews the most critical risks associated with
each particular BCI classification from the data integrity,
data confidentiality, data and service availability, and safety
perspectives. This classification analysis highlights the
most relevant cybersecurity impacts of each BCI family.
Once reviewed existing BCI cybersecurity risks, Section III
focuses on analysing the cybersecurity issues related to
the design of the BCI life-cycle. In this context, firstly
we unify the existing heterogeneous BCI life-cycles in
a novel and common approach that integrates recording
and stimulation processes. It is worthy to comment that
before this work, the neural recording process was widely
documented, although existing works proposed different
phases and responsibilities. Furthermore, the phases of the
neural stimulation were completely missing, and no common
mechanisms were defined to address bidirectional BCI
systems. Once proposed the new life-cycle design approach,
Section III reviews the attacks that exploit the cybersecurity
risks described in Section II, the impact generated by
the attacks and the countermeasures to mitigate them,
both documented in the literature and detected by us. After
highlighting the cybersecurity issues related to the BCI design,
Section IV reviews the inherent cyberattacks, their impacts
and countermeasures affecting to current BCI deployments
scenarios. This section identify the cybersecurity issues
generated by the devices implementing the responsibilities



of each life-cycle phase, as well as the communication
mechanisms and the application scenarios. The last main
contribution of this article is provided by Section V, were
we give our vision regarding the trend of BCI and the
cybersecurity challenges that this evolution will generate in
the future. Finally, Section VI presents some conclusions and
future work.

II. CYBERSECURITY RISKS ASSOCIATED WITH BCI
CLASSIFICATIONS

This section analyses the cybersecurity risks of the most
well-known BCI classifications found in the literature,
defining a risk assessment over each category of BCI and
being the first work focusing in that aspect. At this point,
it is worthy to note that solutions combining aspects from
several families usually result in the aggregation of their risks.
Finally, this section documents the cybersecurity concerns
generated from the risks according to the following common
aspects considered in cybersecurity:

• Integrity: protection of users neural and private data in
such a way that it cannot be manipulated between sender
and receiver,

• Confidentiality: restrictions over the data to ensure its
accessibility only for authorised users,

• Availability: guarantee over a service or the management
of its data to ensure that there will be no alteration in its
correct functioning,

• Safety: preservation of the the physical integrity of the
user, not being negatively affected by the use of the
system.

A. Design of BCIs

The design of BCIs decides who is responsible for initiating
the neural data acquisition process and how the process is
performed. In other words, this classification indicates if
the process is triggered by the user or the BCI, and how
the interaction is done to perform the intended actions [12],
[17]–[20]. According to this categorisation, four BCI families
have been defined in the literature: active, passive, reactive,
and hybrid. From the cybersecurity perspective, the main risks
found for these four BCI families are adversarial attacks, as
explained in the following paragraphs.

In active BCIs, also known as independent [18] or
spontaneous [12], users intentionally initiate a predefined
action that generates brain activity, such as imaging limb
movements, which is then captured by the BCI [18], [19]. An
example of an action is the imagination of limbs movements
[18]. Active BCIs have been used by Gilja et al. [21] for
the control of a computer cursor in rhesus monkeys. Passive
BCIs, in contrast to active BCIs, focus on the acquisition
of spontaneous and non-evoked brain activity, typically
generated during complex real-world tasks, such as the
actions performed by a pilot during a flight [17], [19].

Passive BCIs have been used to measure mental states such
as attention, stress, workload or emotions [22]. The third
family is termed Reactive BCIs, also identified as dependent
[18] or evoked [12]. This family depends on external stimuli
presented to the users and the neural responses generated
by their brains as a response. Reactive BCIs are used, for
example, to detect situations in which the user recognises
external stimuli from a set of unknown. Finally, Hybrid
BCIs can be considered from two perspectives. On the one
hand, they are BCI systems that receive different types
of brain signals as input [18]. Focusing on this approach,
Ramadan et al. [12] and Hong et al. [20] showed different
possibilities and their purpose. For example, a combination of
Electroencephalography (EEG) and Electromyography (EMG)
to improve accuracy and enhance application performance.
On the other hand, Wahlstrom et al. [17] defined hybrid BCIs
as a combination of, at least, one active, passive or reactive
BCI system with non-BCI technologies to improve system
performance (e.g. combination of an active BCI and a finite
state automaton to control a robot).

Regarding the cybersecurity risks of the previous BCI
families, we identify malicious external stimuli as the most
damaging one. They are exploited by adversarial attacks,
explained in Section III-A and III-D, which are based on
presenting malicious inputs either to the user or the BCI to
obtain a benefit. An example of this benefit is the use of
subliminal visual stimuli to generate specific brain signals
that imply sensitive data leakage, such as the acquisition of
thoughts or personals beliefs. In this context, Wahlstrom et
al. [17] indicated that if users with active BCIs are able to
stop the BCI functioning and they have given consent for the
acquisition of such data, there is no risk of confidentiality
attacks. However, we identify that adversarial attacks applied
to these BCIs generate data confidentiality concerns, as the
previous conditions do not prevent BCIs from suffering
vulnerabilities. In addition, Wahlstrom et al. documented
that passive BCIs are at risk of data confidentiality attacks,
since users do not have control over the BCI. Moreover,
they highlighted that in reactive BCIs confidentiality issues
are unlike to arise if the neural activity is filtered, users are
in a controlled environment, and they gave their consent.
In contrast, adversarial attacks, based on the subliminal
visual principles mentioned above, have been detected in the
literature [8], [23]. Related to hybrid BCIs, Wahlstrom et
al. [17] identified that the risk of these technologies are the
combination of the risks of each of their parts. Taking into
account these aspects, we also detect data integrity and data
availability concerns in all BCI designs, since adversarial
attacks can derive in the alteration of the data acquired by the
BCI or even the disruption of the data acquisition process.
In addition, we identify safety issues generated from these
problems. Based on the above concerns, we consider that
hybrid BCIs have the highest risk, followed by reactive BCIs,
passive BCIs, and finally active BCIs.



Fig. 3 summarises the risks described in this classification.
Each family has been represented by a line colour, while
the risks documented in this section have been indicated by
a number. Based on that, the severity of these risks has
been considered based on four different types of impacts
(integrity, confidentiality, availability and safety), represented
in the vertex of each radar chart. This severity is quantified in
a scale between zero and three, where a zero value defines an
absence of risk, and three represents a critical high risk.

B. BCI technology

BCIs are also differentiated according to their technology,
where two additional sub classifications arise depending
on if they are intended for acquiring neural data or for
brain stimulation. Taking into consideration the acquisition
of brain waves, the most representative technologies are
EEG, Functional Magnetic Resonance Imaging (fMRI),
Magnetoencephalography (MEG), Electrocorticography
(ECoG), and neural dust [12], [18], [24], [25]. On the
other hand, focusing on brain stimulation techniques, the
most relevant ones are Transcranial Magnetic Stimulation
(TMS), Transcranial Electrical Stimulation (tES), Transcranial
Focused Ultrasound (tFUS), Deep Brain Stimulation (DBS),
and neural dust [3], [26]. All these families generate
cybersecurity risks, where we detect issues related to their
temporal and spatial resolution. In addition, the inherent risks
associated with acquisition and stimulation technologies are
also considered by this classification in the next paragraphs.

Related to neural activity recording, Electroencephalogra-
phy (EEG) is a non-invasive technology that uses electrodes
placed on the scalp [12]. This technology highlights for
being easy to use, cheap, portable and with a high temporal
resolution (in the order of milliseconds) [12], [24]. It is
the most widely used non-invasive technology, mainly in
video games and entertainment [25], [27]. However, it has
poor spatial resolution and the acquired brain waves can be
distorted by other neural activity, such as the movements
of muscles and eyes, known as artifacts [24]. Functional
Magnetic Resonance Imaging (fMRI) is a another non-
invasive technology used to measure the variation of blood
haemoglobin concentrations during brain activity. It has better
spatial resolution than EEG and Magnetoencephalography
(MEG), so it can identify active zones throughout the brain.
However, it has a poor temporal resolution, between 1 and
2 seconds [12], [18], [24]. The resolution of fMRI is also
affected by head movements [12]. This technology is useful
as a in clinical scenarios to treat neurological conditions such
as stroke or mental disorders, although it is not applicable to
everyday use [18]. Continuing with non-invasive recording
technologies, MEG uses functional neuroimaging over
magnetic fields produced by the electric current generated by
cortical neurons. This method has great temporal and spatial
resolution. Despite these benefits, MEG can only be used
in magnetically shielded installations, and it is not portable.
This technology is widely used for the detection of regions

with abnormal brain functions and in tetraplegic and stroke
patients [12], [18]. Finally, Electrocorticography (ECoG) is a
partial-invasive method in which a grid of electrodes is placed
on the surface of the brain [18]. It offers a Signal-to-Noise
Ratio (SNR) superior to non-invasive systems, such as EEG,
as well as higher spatial and temporal resolution. In addition,
it allows better detection of high frequency oscillatory activity
[24]. Despite the above advantages, ECoG cannot be used to
detect single-neuron spikes [18] and it is very challenging to
use these devices outside an operating room [12].

Regarding the stimulation of neurons, Transcranial
Magnetic Stimulation (TMS) is a technology that generates
electrical fields within the brain, reaching the cortex, and
aiming to modulate brain activity and behaviour. This
technology has obtained FDA approval in 2018 to treat
depression and headaches [3]. TMS has also been used for
testing dynamic communication between interconnected areas
of the brain [26] and cognitive ageing [28]. Although TMS
has a good temporal resolution, it presents a bad spatial
precision [18]. Transcranial Electrical Stimulation (tES)
is another stimulation technique that uses weak, painless
currents applied to the scalp [26]. It can be based on
Direct Current Stimulation (tDCS) or Alternating Current
Stimulation (tACS). tDCS is a simple method that stimulates
the cortex and affect relatively large areas, presenting a low
spatial and temporal resolution. In contrast, tACS present
a good temporal precision [26]. It has been reported that
tES can enhance and perturb cognitive processes, such as
creative problem solving or working memory, when applied
to different brain regions. Furthermore, it can be used to
improve working memory performance and motor behaviour
[3], [26]. Although these technologies are promising, they
are not mature enough for its use in humans, in terms of
reliability and reproducibility [3], [29]. Transcranial Focused
Ultrasound (tFUS) is a novel neuromodulation technique that
offers a high spatial resolution, being the only non-invasive
technology able to penetrate the skull and stimulate specific
circuits deep in the brain [30], [31]. It has been used to
stimulate the activity of cortical, thalamic and hippocampal
circuits in animals [3] and it may be useful to identify and
treat neurological and psychiatric disorders in humans, such
as neuropathic pain or depression, due to its potential to
induce plastic changes in aberrant brain circuits [31]. Finally,
Deep Brain Stimulation (DBS) is an invasive neurostimulation
technique that involves a surgical procedure for implanting
electrodes deep within the brain. This invasiveness provides
DBS with good spatial and temporal resolution. Focusing
on its functioning, the implanted device sends electric
currents into targeted subcortical areas to increase, suppress
or distort neural activity. This method has been used for the
treatment of conditions such as Parkinson disease, dystonia
and chronic pain syndromes [2], [5], [7], [31]. Despite the
benefits of DBS, the associated surgeries required may have
complications such as infection or haemorrhage [31].
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Fig. 3. Cybersecurity and safety risks associated with the design of BCIs.

Neural nanonetworks comprise several technologies to
record and stimulate neural activity through the use of
nanodevices. In particular, neural dust is a solution to
acquire neural data relying on nanodevices allocated into
the cortex, beneath the skull and below the dura mater [18],
[32]. An interrogator is powered by an external transceiver
using radio frequency power transfer [32], and it establishes
wireless power and communication with the neural dust using
ultrasounds [32], [33]. This nanotechnology offers some
advantages, as it does not use microelectrode shafts that can
damage the nervous tissue, it records very concrete areas
within the brain and it can work as a closed-loop system
based on real-time adaptation, offering high spatial and
temporal resolution [18]. It is also an interesting alternative
to electromagnetic systems due to its lower attenuation and
higher efficiency [33]. Wirdatmadja et al. [34] used the
neural dust model defined by Seo et al. [32] to propose a
stimulation system based on optogenetic nanonetworks and
the definition of different firing patterns (e.g. brain regions,
frequencies, temporal synchronisation) to interact with the
devices. Zheng et al. [35] developed an implantable device
based on optogenetic stimulation for peripheral nerves,
focused on activating limb muscles. Lee et al. [36] defined
the concept of Neurograin sensors, implementing a network
of nanodevices that uses wireless energy harvesting, and
validated in both ex vivo and in vivo rodent tests. Despite the
advantages of these technologies, they are experimental and
they have not yet been tested in humans [18].

Once summarised the main aspects of the families making
up this classification, we identify that both temporal and
spatial resolutions generate important cybersecurity risks,
as in Section II-C. In particular, BCI technologies such
as DBS, neural dust, ECoG or MEG present higher risks

in terms of data confidentiality and safety that those with
lower resolutions, like EEG, fMRI or TMS. In addition, it is
important to highlight that the invasiveness of these methods
also impacts on the severity of the risks associated with
each family. Because of that, DBS and neural dust have a
higher risk than ECoG due to their invasiveness, and all of
them are more damaging than MEG, as it is a non-invasive
technology. In contrast, technologies with low resolutions
present concerns on data and service availability, since they
transmit a reduced amount of data that can be affected more
easily by electromagnetic interference. According to the
inherent functioning of acquisition and stimulation systems
we detect two more risks. On the one hand, since acquisition
technologies aim to record neural data, they generate risks
in terms of data integrity and confidentiality, where attacks
can aim to impersonate or gather users’ neural data. On the
other hand, stimulation systems mainly present safety issues,
where attackers can cause brain damage. Several works
in the literature review the safety concerns of stimulation
technologies. According to Glannon et al. [37], ECoG has a
risk of infection and haemorrhage, and the micro electrode
arrays used present potential problems of bio compatibility
with neural tissue. In addition, Polanı́a et al. [26] indicated
that TMS pulses applied to particular areas can induce
suppression of visual perception or speech arrest, which
serve as an opportunity for attackers. Finally, we identify
electromagnetic noise as a risk directed over the physical
aspects of non-invasive transmission systems. In particular,
technologies such as EEG acquire electrical currents, while
fMRI and MEG acquire magnetic fields emitted from the
brain. These specific aspects can serve as an opportunity for
attackers to override the legitimate information generated by
the brain, creating concerns in terms of data integrity and
availability. These attacks are explained in Section III-A.



Finally, Fig. 4 indicates the risks that affect each of the
BCI technologies documented in this classification. It is
important to note that the risks associated with the precision
and electromagnetic noise are also influenced by the level of
invasiveness of these technologies. Because of that, invasive
systems offer higher risks than non-invasive systems.

C. Level of Invasiveness

The level of invasiveness indicates whether the BCI device
is implanted in the user’s body, or placed externally. This
classification has been widely studied in the literature [1], [7],
[9], [11], [12], [17], [18], [23], [24], [26], [38]–[40], where
the following three families have been proposed: invasive,
partial-invasive and non-invasive. In the following paragraphs,
we give an overview of the previous three families and
highlight their main discriminant characteristics: the spatial
and temporal resolution to record and stimulate neural
activity, and the intrusiveness affecting persons’ physical
safety. Finally, for each family we detect the cybersecurity
concerns related to the previous characteristics.

Invasive systems require a neurosurgery process that
involves opening the scalp, the skull and placing in the brain
tissue the BCI components to record or stimulate neurons. This
technology has been used mainly in the medical field because
it allows measuring neural activity with very little noise. In
the last decades, they allow direct interaction with the brain,
enabling the stimulation of individual neurons [18], [34].
The second family of this category is called partial-invasive
and the BCIs components are placed on the brain surface,
without penetrating the nervous tissue. This family is used in
the field of medicine, for example, with subdural electrodes
aiming to identify the location of epileptic seizures [24], [41].
This type of BCI has lower temporal and spatial resolution
than the previous one, which affect to its applicability in
some application scenarios. Finally, non-invasive BCIs are
applied outside the skull, directly on the scalp. They present
lower temporal and spatial resolution than the previous two
families due to the attenuation and filtered provoked by
the bone and skin. However, they have an important role
in the health field, where non-invasive neural stimulation
systems are gaining popularity [12]. In addition, these
technologies are nowadays the most extended systems due to
their simplicity and applicability in entertainment scenarios,
where final users are benefited from their advantages [1], [12].

Analysing the previous three families from the cybersecurity
point of view, we have identified that two of the most serious
risks are the temporal and spatial resolution. In this context,
BCIs with higher spatial resolution can access to more precise
neural data or stimulate more specific brain regions than
those who have lower precision [12], [18]. In addition, a
high temporal resolution allows attackers to perform more
complex attacks since the communication delay is reduced.
In this context, invasive systems have access to neural-level

data, whereas less invasive systems acquire aggregated data
with less resolution. That increase of precision generates
concerns in terms of data confidentiality, where systems
with higher resolution have access to more precise and
detailed information (e.g. thoughts or beliefs). In addition,
BCIs precision can impact users’ physical safety, where a
high precision can increase the damage of attacks during
neurostimulation processes. However, a reduction of the
precision derives in the transmission of a reduced quantity
of data that can be insufficient for the correct functioning
of BCIs in specific scenarios, impacting service availability.
The level of intrusiveness is another risk detected in the
literature. Invasive and partial-invasive BCIs are at risk of
tissue damage, infection and rejection due to the surgical
procedure required to place them [1], [12], [18], [42]–[44]. In
addition, both present a risk of degradation in the acquisition
and stimulation technologies used, such as electrodes, when
used for a long period of time [42].

Focusing on temporal and spatial resolution, invasive sys-
tems have the highest risk within these criteria, followed by
partial- and non-invasive BCIs. Invasive systems introduce
more serious concerns in terms of user’s physical integrity
than partial-invasive, while non-invasive BCIs are immune to
them. However, non-invasive stimulation systems significantly
reduce, but not suppress, safety risks [26]. At this point, it
is important to highlight that the majority of attacks on BCIs
have been conducted over non-invasive systems. However, it
is motivated by their designs and implementations, and not
due to problems inherent to the level of invasiveness. Finally,
Fig. 5 represents the risks detected for this BCI classification.

D. Synchronisation

This classification is focused on the interaction between
the BCIs and the users. It determines who controls the
recording and stimulation processes and in which time slots.
Based on that, two families of BCIs have been documented
in the literature [12], [45]: synchronous and asynchronous.
The next paragraphs of this section highlight the most
important aspects of these families, as well as the the risks
and concerns detected for this classification, being the control
the communication between BCIs and users the most critical
aspect.

In synchronous (or cue-paced) BCI systems, the interaction
between the user and the BCI takes place during specific
periods of time [12]. This planning is imposed by the BCI,
which controls the communication. Outside these periods,
the BCI is not able to communicate with the user. They
are easier to implement than asynchronous BCIs, but they
are not suitable for acquiring users’ mental intentions [45].
Bentabet et al. [46] used synchronous BCIs to control domotic
devices, extracting features from P300 waves. In contrast, in
asynchronous (or self-paced) systems, users can generate brain
signals at any time, and the BCIs will react to these events.
Ramadan et al. [12] highlighted the complexity of detecting
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Fig. 4. Cybersecurity and safety risks associated with the BCI technology.

idle states, and proposed the use of a button to activate or
deactivate the acquisition of stimuli. An et al. [45] proposed
the design of an asynchronous BCI to control a virtual avatar
in a game. In this game, the avatar competes with other users
in a race, running continuously and, when a control command
is received, an action on the avatar is performed. As can be
seen, these systems depend on the moment and the action
performed by the user, without control imposed from the BCI.

Considering the cybersecurity risks generated by these
two families of BCIs, no risks have been documented in
the literature. However, we identify that their main issue

is a loss of the control over the communication between a
BCI and its user. In this context, we detect that synchronous
BCIs, which control the communication, originate data
integrity and confidentiality concerns, where attackers taking
control over the BCI are able to gather and alter the neural
data. In addition, availability issues are possible, where
attackers disable the data acquisition process, even without
the knowledge of the users. Finally, this lack of control
can generate safety impacts, where attackers managing the
functionality of a BCI can produce critical physical harm,
such as malicious movements of a wheelchair or damaging
stimulation patterns. On the other hand, since asynchronous
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BCIs have less decision capabilities and awareness over
the acquisition process, we identify that this BCI family
has a risk of malicious external stimuli aiming to perform
adversarial attacks, as reviewed in Section III-A. These
stimuli originate concerns in terms of data integrity, where
attackers impersonate the neural data generated that is
communicated to the BCI. Moreover, they generate data and
service availability issues, since these stimuli can impact the
acquisition process and thus the normal functioning of the
communication. Finally, we consider that asynchronous BCIs
have a high risk of confidentiality problems, where the BCIs
are constantly acquiring brain activity and therefore sensitive
information is gathered. The previous attacks and concerns
also generate safety problems.

Taking into consideration the above, asynchronous BCIs
present greater data integrity and availability issues, due the
their larger temporal exposition to neural data. However, con-
sidering the awareness and control capabilities of the user over
the communication, synchronous BCIs have higher concerns
over both issues. In addition, although both synchronous and
asynchronous BCIs share common concerns, we detect that the
first family has a higher risk, since attacks over BCIs are more
probable than those based on user neural data impersonation.
This situation is summarised in Fig. 6, which highlights the
difference of severity between these BCI families.

E. Usage Scenario

The usage or application scenario is another well-known
criteria to classify BCIs. It was proposed by Li et al. [1] and
they highlighted the following four types: neuromedical, user
authentication, gaming and entertainment, and smartphone-
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based BCIs. The cybersecurity risks associated with this
classification strongly depend on the characteristics and
actions took by each family or scenario. After summarising
the main aspects of this classification the risks detected
for each family will be commented and explained in the
subsequent paragraphs.

The field of neuromedical applications has been the
centre of the research in BCIs for decades. The applications
developed within this field range from the control of
prosthetic limbs and wheelchairs [1], [5], [7] to the use in
brain stimulation procedures [18], [26], [34]. In addition,
Chaudhary et al. [47] used BCIs to establish a simple
communication system with completely paralysed patients.
Nowadays, current research on BCIs focuses on novel
mechanisms and technologies to analyse and stimulate the
brain, (considered in Section V). The second scenario is the
use of BCIs as authentication systems. The authentication
process consists in recording the user’s brain waves while
performing a previously established task. Then, the acquired
neural data is validated against the entity, which contains
the authentication data to validate the user. BCI is a good
biometric element since each brain generates unique patterns
[9]–[11], [48], [49], and the mental action that triggers the
authentication process can be modified enabling an adaptive
and flexible authentication mechanism. Finally, brain signals
can be easily affected and it is difficult to reproduce them
under the effects of stress, anxiety or drugs [8]. The third
type, gaming and entertainment, arose due to the utility of
BCIs in the video game industry. Thus, development tasks
have been facilitated by the use of common APIs. Ahn et
al. [25] did a review of BCI games, highlighting games
such as Bacteria Hunt, and a survey involving researchers,



game developers and users. McMahon et al. [27] focused
on virtual reality (VR) and created a low-cost open-source
development environment prototype for BCI games. Finally,
the smartphone-based BCIs are based on the relationship
between BCIs and user applications stored in smartphones,
where it is the most common usage scenario in commercial
BCI brands [10]. This usage scenario is described in Section
IV-A.

The cybersecurity risks of each BCI family vary
considerably according to the usage scenario. These risks
generate data confidentiality concerns in medical scenarios,
where attackers are able to gather sensitive information
[1], [50]. Moreover, they are at risk of user’s physical
harm, since BCIs are used to improve health conditions in
patients. Denning et al. [5] identified safety concerns based
on malicious neural stimulation actions, whereas Li et al.
[1] detected issues on service integrity if users modify the
parameters that control prosthetic limbs to gain a personal
benefit. In addition, we identify that neuromedical scenarios
have a risk on the management of very sensitive information
of patients, such as their personal data, medical history
and neural activity data, affecting users’ confidentiality.
Regarding authentication scenarios, Li et al. [1] identified
data confidentiality concerns based on the acquisition of the
authentication data. In addition, we detect that they are at
risk of malicious external stimuli aiming to alter the neural
data used for the authentication process and thus impact on
the data integrity and availability. On the other hand, we
identify that the gaming and entertainment scenario has a
risk of malicious external stimuli, as this family is based on
audiovisual systems that serve as an opportunity for attackers
to perform adversarial attacks. Because of that, we highlight
data confidentiality issues, were attackers present malicious
stimuli to acquire sensitive data taking advantage of these
multimedia resources. This situation also affects data integrity
and availability, as explained in Section III-A. Finally,
smartphone-based scenarios present several risks. First, they
rely on systems with potential problems, such as a lack of
updates of the Operating System (OS) and applications [1],
[8], [11], [39]. In addition, we detect that the heterogeneity
of the hardware, OSs, applications used and versions of each
specific smartphone can also produce cybersecurity risks [51].
Based on that, Takabi et al. [10] analysed several smartphone
applications developed with the NeuroSky platform [52].
They detected that some third-party applications required
access to the phone book and permissions to read the
call logs, which was not the objective of the applications,
generating confidentiality concerns. Moreover, we identify
that this lack of control over the elements of the smartphone
generates concerns in terms of data integrity, data availability
and safety, where attackers perform malicious actions over
the users and their data.

In conclusion, Fig. 7 provides an overview of the previous
concerns. The highest risks of neuromedical scenarios

are on integrity, confidentiality and safety issues, due to
their inherent critical actions. For authentication systems
and gaming and entertainment scenarios, we consider that
integrity, confidentiality and availability concerns are equally
probable. Finally, smartphone-based scenarios present all
four concerns. On the other hand, TABLE I groups all the
information described in the section. It indicates, for each
classification and BCI family, the general references that treat
relevant concepts associated with each BCI family. In addition,
the four concerns analysed throughout the section are exposed
(i.e. integrity, confidentiality, availability and safety), where
one or more references indicate that the BCI family presents
a concern previously documented in the literature. Moreover,
our contribution is indicated with a red icon (7). Finally,
a green icon (3) indicates that there are no concerns identified.

III. CYBERATTACKS AFFECTING THE BCI CYCLE,
IMPACTS AND COUNTERMEASURES

This section reviews the different operational phases of
BCIs detected in the literature, known as BCI cycle, and
homogenises them in a new approach that overcomes the
existing limitations, shown in Fig. 8. After that, we survey
the cybersecurity attacks affecting each phase of the cycle,
their impacts, and the countermeasures documented in the
literature. Unexplored opportunities in terms of cyberattacks
and countermeasures affecting each phase are presented as
well.

Different configurations of the BCI cycle have been
proposed in the literature. However, the existing versions
only consider the signal acquisition process, missing the
stimulation of neurons. These solutions present heterogeneous
classifications of the BCI cycle, as some of them do not
consider the generation of brain signals as a phase or group
several phases in only one, without providing information
about their roles [7], [48]. Other solutions, as the proposed
in [1], [7], [22], [24] are confusing due to they define as
new phases, transitions and data exchanged between different
stages. In terms of applications, some authors define a generic
stage of applications [1], [25], [48], [56] while others deal
with the concept of commands sent to external devices [9],
[11], [20], [38]–[40], [46]. In addition, just a few works define
the feedback sent by applications to users [1], [7], [9], [11],
[24], [38]–[40], [46]. With the goal of homogenising the BCI
cycle and addressing the previous missing or confusing points,
we present a new version of the BCI cycle with five phases
(with clear defined tasks, inputs and outputs) that considers
both acquisition and stimulation capabilities. Fig. 8 represents
our proposal, where clockwise direction corresponds to the
brain signal acquisition process. The information and tasks
concerning this functioning are indicated in blue. In contrast,
the stimulation process is indicated in the counterclockwise
direction starting from phase 5 and, in each phase, the
information and tasks are identified in red.



TABLE I
CYBERSECURITY RISKS AND CONCERNS BASED ON BCI CLASSIFICATIONS, DIFFERENTIATING BETWEEN THOSE FAMILIES THAT HAVE A LACK OF

CYBERSECURITY ISSUES (3) AND THOSE WITH IDENTIFIED PROBLEMS, EITHER DOCUMENTED IN THE LITERATURE (LIST OF REFERENCES) OR
DETECTED BY US (7).

Cybersecurity concerns
BCI classification BCI family Family-related literature Integrity Confidentiality Availability Safety

Design of BCIs
(Section II-A)

Active [12], [17]–[19], [21] 7 7 7 7

Passive [17]–[19], [22] 7 [17] 7 7

Reactive [8], [12], [17], [18] 7 [8], [23] 7 7

Hybrid [12], [17], [18], [20] [17] [17] [17] [17]

Level of invasiveness
(Section II-C)

Invasive [12], [18], [34] 3 7 7 [42]

Partial-invasive [24], [41] 3 7 7 [42]

Non-invasive [1], [12] 3 7 7 [26]

Synchronisation
(Section II-D)

Synchronous [12], [45], [46] 7 7 7 7

Asynchronous [12], [45] 7 7 7 7

Usage scenario
(Section II-E)

Neuromedical [1], [5], [7], [18]
[26], [34], [47] [1] [1], [50] 3 [5]

User authentication [1], [8]–[10]
[11], [48], [49], [53], [54] 7 [1] 7 3

Gaming and entertainment [1], [25], [27] 7 7 7 3

Smart-phone based [1], [9], [10], [39] 7 [10] 7 7

BCI Technology
(Section II-B)

EEG [12], [24], [25], [27] 7 7 7 3

fMRI [12], [18], [24] 7 7 7 3

MEG [12], [18] 7 7 7 7

ECoG [12], [18], [24], [55] 7 7 3 [37]

TMS [3], [26], [28] 7 3 7 [26]

tES [3], [26], [29] 7 3 7 7

tFUS [3], [30], [31] 7 7 7 7

DBS [2], [5], [7], [31] 3 7 3 [31]

Neural dust [18], [32]–[34] 3 7 3 7
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Fig. 7. Cybersecurity and safety risks associated with the BCI usage scenario.

According to the neural acquisition process (clockwise
direction in Fig. 8), phase 1 focuses on the generation of
brain signals. Generated data contain the user’s intention to
perform particular tasks; for example, controlling an external
device. This phase can be influenced by external stimuli,
producing modifications in the regular neural activity. In
phase 2, the brain waves are captured by electrodes using
a wide variety of technologies, such as EEG, fMRI, and so
on. Raw analog signals containing the user’s intention are
then transmitted to phase 3, where a data processing and
conversion are required. Specifically, an analog-to-digital
conversion procedure is performed to allow further processing
of the data. One of the main goals of this phase is to
maximise the SNR, which compares the level of the target
signal to the level of background noise, to obtain the original

signal as accurately as possible. After that, phase 4 processes
the digital neural data to decode the intended action by the
user. To perform this task, relevant features are calculated
and selected from the neural data. After that, different models
(classifiers, predictors, regressors, etc.) or rule-based systems
are used to decide the intended action [40], [56]. The action
is finally sent to applications in phase 5, where the action is
performed. Applications can also send optional feedback to
the user to generate brain signals and thus new iterations of
the cycle.

Regarding the stimulation process (counterclockwise di-
rection in Fig. 8), the loop starts in phase 5, where it is
specified the stimulation action in a general way (e.g. stimulate
a concrete brain region to treat Alzheimer’s disease). This



intended action is transmitted to phase 4, where this input
is processed using different techniques, such as Machine
Learning (ML), to generate a firing pattern that contains high-
level information about the stimulation devices to be activated,
the frequencies used and the temporal planning. Phase 3 is
intended to transform the firing pattern received, indicated in
a general fashion, to specific parameters related to the BCI
technology used. For example, the definition of which neurons
must be stimulated or the power and voltage required for the
process. These stimulation parameters are then transmitted
in phase 2 to the stimulation system, that is in charge of
the physical stimulation of the brain. After this process, the
brain generates neural activity as a response, that can also
be acquired by the BCI to measure the state of the brain after
each stimulation process. At this point, an alternation between
brain stimulation and signal acquisition is possible, moving
from one direction of Fig. 8 to the other.

Focusing on the attacks, impacts and countermeasures de-
scribed later in this section, they have been represented in
Fig. 9. As can be seen, each attack has been represented by a
colour, which associates the impacts that it generates and the
countermeasures to mitigate it. For each impact included in
the figure, a simplified version of the BCI cycle is included.
Those phases of the cycle marked in red indicate that the
impact has been detected in the literature for that specific
phase, whereas the blue colour indicates that the impact
is our contribution to the phase. In addition, the attacks,
impacts and countermeasures marked with references have
been proposed in the literature, while those without references
are our contribution. Finally, it is important to note that this
figure highlights the limitations exposed by the literature, as
can be appreciated by the volume of our contributions.

A. Phase 1. Brain signals generation

This first phase of the cycle focuses on the brain processes
generating neural activity, which can be influenced by external
stimuli. Focusing on the attacks documented for this stage,
adversarial attacks [57], [58] have been detected in the
literature as a mechanism to alter the brain signals generation
by presenting intentionally crafted inputs to the system with
the goal of disrupting its normal functioning. In this context,
these attacks are also an opportunity for attackers trying
to disrupt or alter BCI systems that use ML techniques,
as explained in Section III-D. To understand the attacks
on this phase, it is important to introduce the concept of
Event Related Potential (ERP), which is a neurophysiological
response to a cognitive, sensory or motor stimulus, detected
as a pattern of voltage variation [48]. P300 is an ERP detected
as an amplitude peak in the EEG signal about 300ms after the
stimulus and is extensively used due to its quick response [59].

Martinovic et al. [8] used the P300 potential to obtain
private information from test subjects and demonstrated
attacks on confidentiality. To do this, visual stimuli were
presented in the form of images, grouped as follows: 4-digit
PIN codes, bank ATMs and credit cards, the month of birth

and photos of people. The objective of the experiment was to
prove that users generate a higher peak in the P300 potential
when faced with a known stimulus and, therefore, be able to
extract private information. This study was conducted with
28 test subjects, 18 male and 10 female, using the Emotiv
EPOC 14-channel headset [60], a commercial BCI EEG
device. The experiment showed that information leakage,
measured in information entropy, was 10%-20% of the
overall information, and could be increased to approximately
43%. On the other hand, Frank et al. [23] demonstrated the
possibility of performing subliminal stimuli attacks against
data confidentiality. To perform the experiments, the same
ERP concept with P300 potentials was used. In this work,
the authors showed information hidden within the visual
content projected to 29 subjects, in the form of stimuli with
a duration of 13.3 milliseconds, imperceptible to the human
eye. The study was performed with EEG devices of the
brands NeuroSky [52] and Emotiv [61]. We consider that
the previous works are important to highlight the importance
of cybersecurity in BCI and additional experiments with a
higher number of users are required.

Some well-known methods to present stimuli to users and
analyse their neural response have been documented in the lit-
erature [8], [9], [11]. For example, to analyse with a polygraph
the neural activity generated after a question in a lie detection
test. Despite these methods are not attacks themselves, they
are an opportunity to develop new adversarial attacks against
BCIs, and are defined as:

• Oddball Paradigm: specific target stimuli, hidden be-
tween a sequence of common non-target stimuli, would
generate peaks in ERP. For example, to differentiate a
known face among several unknown ones.

• Guilty Knowledge Test: the response generated by famil-
iar stimuli can be differentiated from the generated by
unfamiliar elements. This principle has been used for lie
detection.

• Priming: a stimulus can generate an implicit memory
effect that later influences other stimuli.

It is important to note that the adversarial attacks detailed
for this phase have only been conducted against data
confidentiality. However, we consider that they can also affect
BCI integrity, availability and safety. These stimuli can alter
the normal functioning of this phase, generating malicious
inputs for the next stages that can derive on disruptions of the
service or incorrect actions aiming to cause physical damage
on users.

Focusing on the countermeasures to mitigate these attacks,
Ienca et al. [7] indicated that specific training sessions could
be beneficial to protect users against potentially unsafe
stimuli related to authentication methods and banking-related
information. In addition, the inclusion of demos and serious
games in commercial BCI devices may educate them in the
risks of these technologies. However, these countermeasures
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can only be applied when the user is aware of the stimuli.
Because of that, we consider that adversarial attacks in this
phase can be reduced if BCIs are complemented with external
systems that monitor the stimuli presented and give users
the possibility to evaluate if the content is appropriate. For
example, by analysing if the multimedia contents showed
to users, such as images or videos, have been maliciously
modified [62], [63], even if they are subliminal.

B. Phase 2. Neural data acquisition & stimulation
This second phase is focused on the interaction with the

brain to acquire brain waves or perform neural stimulation.
Replay and spoofing attacks have been detected in the
literature for this phase. Replay attacks consist in the
retransmission of previously acquired neural data to perform
a malicious action. For example, to impersonate one of the
legitimate participants of the communication [64]. These
attacks have been widely considered in computer networks
[65] (e.g. routing protocols and authentication mechanisms).
On the other hand, spoofing attacks intent to masquerade
an entity of the communication, transmitting malicious data.
Common spoofing attacks in network communications are,
among others, IP spoofing, MAC spoofing [66] and DNS
spoofing [64]. However, both attacks also are applicable to
BCI, as detected by Li et al. [1] for neural data acquisition.
On the other hand, jamming attacks transmit wireless noise
signals that decrease the SNR on the receiver side and
therefore disrupt the wireless communication by affecting
its availability [67], [68]. Despite several types of jamming

strategies have been defined in the literature according to
their functioning, this work considers only the most relevant
for BCI [67]–[69]. In permanent attacks, the jamming
signal is continuously transmitted, whereas reactive attacks
only transmit a signal if the jammer detects a legitimate
transmission active.

Regarding the impacts produced by the previous attacks,
Li et al. [1] identified a combination of replay and spoofing
attacks in which synthetic EEG signals can be crafted
from historical EEG data and impersonate the legitimate
brain waves, affecting their integrity. They also documented
impacts on the availability, where the acquisition process
was disrupted. In addition, we detect a new opportunity
applying these attacks to the stimulation scenario. In this
sense, attackers can disrupt the stimulation process or acquire
and modify the raw stimulation pattern used by the BCI to
maliciously stimulate the neurons, affecting their integrity and
availability. We consider that these attacks can also derive in
hijacking attacks, as attackers can take complete control over
the device, affecting the integrity and availability of the BCI.
In relation to jamming attacks, it is important to highlight
that they affect both acquisition and stimulation procedures
of BCI, but they generate different impacts. Taking into
account neural data acquisition, an attacker would aim to
prevent the electrodes to capture brain signals due to the
noise transmitted, as pointed out by Ienca et al. [7]. Based
on Vadlamani et al. [67], we also detect this problem in
neural stimulation, where jamming attacks can override the
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legitimate signals emitted by the BCI electrodes if they are
transmitted with enough power [67]. We identify moreover
that spoofing attacks can be present in this context, where the
legitimate transmission of the BCI is masqueraded, affecting
information integrity and availability. Finally, the previous
attacks can derive in users’ physical damage, affecting their
safety.

Regarding the countermeasures to detect and mitigate
replay and spoofing attacks, the techniques used in computer
networks are not applicable in this scenario, as they are
related to specific technologies and protocols. To address
these issues in BCI, we consider the use of ML in the
acquisition scenario as a promising alternative to analyse the
received neural information and detect inconsistencies, such
as duplicated signals or representative patterns [70]. Taking
into account neural stimulation, there are no global solutions
to avoid a malicious attack. However, if the BCI is based
on Implantable Medical Devices (IMD), external devices to
authenticate and authorise the stimulation actions can be
used [70]. Related to the mitigation of jamming attacks,
several detection mechanisms and countermeasures have been
documented [67]–[69]. In summary, all detection procedures
are based on an analysis of the medium to detect abnormal
behaviour, as also identified for neural data acquisition by
Ienca et al. [7]. As proposed countermeasures, Vadlamani
et al. [67] identified the use of low transmission power as
a possible solution to harden the detection of the legitimate
transmission, as well as the use of directional antennas
oriented to the brain to avoid the jamming. The use of
frequency hopping [69] and channel hopping [68] after a
certain duration of time also aim to reduce the impact of these
attacks. These hopping models are based on a pseudorandom
hopping pattern previously known by sender and receiver.
In addition, Spread Spectrum (SS) techniques are used to
transmit the information in a wider bandwidth and thus
avoid the interference. Two main SS techniques are indicated:
Frequency Hopping Spread Spectrum (FHSS), which uses
frequency hopping, and Direct-Sequence Spread Spectrum
(DSSS) [64], [67], [69], that utilises pseudo noise to modify
the phase of the signal. Finally, we detect that the use of
directional antennas is also a possible solution for replay and
spoofing attacks.

C. Phase 3. Data processing & conversion

This phase performs the data processing and conversion
tasks required to allow neural data and actions to be ready for
subsequent stages. Although the literature has not detected
cybersecurity problems in this phase, according to the aspects
indicated by Bonaci et al. in [9], [39] we identify malware
attacks as the most damaging ones. Malware attacks focus on
malicious software aiming to gain access to computational
devices to perform concrete actions. There is a multitude
of different types and families of malware with different
objectives, propagation vectors and infection methods [71],

[72]. Considering their propagation mechanisms, worms
spread themselves over the network exploiting concrete
vulnerabilities, activated without explicit user interaction
[65]. In contrast, viruses typically require user interaction
to infect the device. Both worms and viruses can contain
a payload which defines a malicious action to perform on
the device, such as corruption of information or services.
Focusing on BCIs, malware attacks are candidates to affect
both acquisition and stimulation processes, impacting the
tasks performed in this phase. Specifically, we identify that
malware can disrupt the analog-to-digital conversion that
takes place during neural data acquisition, as well as the
translation of firing patterns to particular stimulation devices.

In this context, we identify that malware attacks have
an impact in both neural data acquisition and stimulation,
where attackers alter or override the data received from
previous phases, generating malicious data sent to subsequent
phases. That is, the analog data recorded during neural data
acquisition or the firing pattern used in neurostimulation
processes. Focusing on data confidentiality, these attacks
can gather the sensitive data managed in this phase, both
analog and digital, and send it to the attackers. For example,
information about private thoughts or neurological treatments.
In terms of data and service availability, both acquisition
and stimulation are potentially vulnerable against malware
that avoid the transmission of the data to subsequent phases
of the cycle. Finally, the previous attacks on integrity and
availability are also a threat against the physical safety of
users, generating damaging stimulation patterns or dangerous
actions finally sent to applications.

Regarding the countermeasures to mitigate the previous
attacks and reduce the impacts, Chizeck et al. [48] defined
a US patent application entitled “Brain-Computer Interface
Anonymize” that proposes a technology capable of processing
neural signals to eliminate all non-essential private information
[9], [10]. As a result, sensitive information is never stored in
the BCI device or transmitted outside. We identify that this
method is specially relevant in this phase, as it is the first stage
after the acquisition process by the BCI. Although the authors
do not provide details about techniques or algorithms to un-
derstand how raw signals are processed, they indicate that this
process can only be performed on hardware or software within
the device itself, and not on external networks or computer
platforms, as a way to ensure the privacy of the information.
On the other hand, the countermeasures to mitigate malware
depend on their type and behaviour. Considering the protection
of individual devices, antivirus solutions perform both static
and dynamic analysis to detect anomalies in the BCI system.
For example, by the use of signatures to identify well-known
families of malware, the analysis of payloads or the execu-
tion of the potential malware in isolated spaces to study its
behaviour, and thus avoid the software infection. In addition,
perimeter security mechanisms, such as firewalls and Intrusion
Detection Systems (IDS) have been considered, responsible for



analysing all incoming and outgoing communication of the
device [66], [72]. We also propose the use of ML anomaly
detection systems to identify potential malware threats [70].
Finally, Chakkaravarty et al. [71] reviewed current persistent
malware techniques able to bypass common countermeasures
and proposed mitigation techniques, such as sandboxing [73],
application hardening [74] and malware visualisation [75]. It
is important to highlight that the countermeasures applicable
for this phase highly depend on the device constraints that
implement this phase, which is typically the BCI device (see
Section IV).

D. Phase 4. Decoding & encoding

Decoding & encoding is the phase focused on the
identification of the action intended by the users in neural
data acquisition, or the specification of the neural firing
pattern in neurostimulation. Considering its cybersecurity
problems, malware attacks have been identified in the
literature by Bonaci et al. [9], [39] in a general way, and
we detect that the same types of malware described in the
Processing & conversion phase are also applicable in the
current one. Specifically, they can serve as an opportunity
for attackers to alter the identification of intended actions or
modify the legitimate firing patterns. However, we consider
that adversarial attacks are the biggest concern in this phase,
when ML techniques are used. These attacks have been
introduced for the Brain signals generation phase but, in
this context, they affect all types of ML models ever studied
over very different data types, such as images, audio or
text, as stated by Finlayson et al. [57]. Because of that,
models both accurate and robust against this kind of attacks
are currently an open challenge. Liu et al. [58] identified
security threats against both ML training and testing phases.
On the one hand, two learning approaches exist in the
training phase: supervised and unsupervised. Supervised
learning is vulnerable to poisoning attacks, where attackers
introduce adversarial samples with incorrect labels to the
data set, aiming to change the training data distribution.
These problems are also extensible to model retraining. In
addition, clustering approaches used in unsupervised training
are also sensitive to adversarial attacks. On the other hand,
attacks on the testing phase focus on exploiting vulnerabilities
of trained models, by the use of crafted samples, where
several specific attacks have been documented. Evasion
attacks aim to create samples that evade detection systems,
whereas impersonate attacks focus on adversarial samples
that derive in incorrect classification of the legitimate ones.
Finally, two attack models exist according to the knowledge
about the model [76]. In white-box attacks, adversaries
have knowledge about the model, while in black-box attacks,
they only have access to the model through a limited interface.

The previously described attacks generate particular
impacts on BCI. On the one hand, malware has an impact
on data integrity and availability, as it can alter or ignore the
received data from previous phases, as well as overriding

the output of the current one. That is, disrupt the action
sent to applications in the acquisition process, or the firing
pattern in neural stimulation. In addition, malware affects the
availability of the ML process by the alteration of the trained
model or the ML algorithm. Considering data confidentiality
issues, malware can access the features used in the ML
training phase, as well as gather information about the model
and the algorithm used. Malware also affects users safety,
as the previous integrity and availability impacts derive in
malicious actions and firing patterns that affect the physical
integrity of users. On the other hand, adversarial attacks also
affect data integrity and availability, as the introduction of
malicious samples aiming to disrupt the model can alter or
avoid the generation of actions and firing patterns. Taking into
account data confidentiality, Shokri et al. [77] demonstrated
that ML models are sensitive against adversarial attacks,
aiming to detect if a sample was in the model’s training data
set. Finally, the use of malicious samples, as is the case of
poisoning attacks, alter the ML system, deriving in physical
harm.

To mitigate the attacks on the ML training phase affecting
integrity and availability, we have identified several techniques
proposed in the state of the art for generic adversarial attacks,
that can serve as an opportunity to improve the security of
BCI. Data sanitisation consists of the rejection of samples that
will produce a negative impact on the model, preprocessing
and validating all input containing adversarial information.
However, this initiative highly depends on the domain and
application environment. Jagielski et al. [78] proposed a sim-
ilar approach against poisoning attacks applied to regression
techniques, where noise and outliers are suppressed from the
training data set. Nevertheless, it does not prevent attackers
from crafting samples similar to those generated by the
legitimate distribution. Adversarial training aims to include
adversarial samples in the training process to allow the recog-
nition of attacks in the future. Defence distillation focuses
on the creation of a second model based on the original,
with less sensitivity regarding input perturbations and offer-
ing smoother and more general results [58], [76]. However,
adversarial training and defence distillation have limitations,
as they depend on the samples used during the training and
can be broken using black-box attacks and computationally
expensive attacks based on iterative optimisation. Goodfellow
et al. [76] also proposed architecture modifications, based on
the improvement of ML models to be more robust, but this
derives in models difficult to train that have degradation in
the performance when used in non-adversarial situations. Liu
et al. [58] documented the integration of different techniques
to mitigate the attacks, called ensemble method. In addition,
they indicated two methods that can be applied in both training
and testing phases. Differential privacy applies randomisation
techniques over the training phase to preserve the privacy of
the information and then prevent its leakage against attacks.
Homomorphic encryption offer encrypted information to the
ML system to protect the privacy of the information used as



input [10], [58], [79].

E. Phase 5. Applications

From the data acquisition context, applications perform
in the physical world the actions intended by users through
their neural activity. These actions can range from the
interaction with a computer or smartphone, to the control
a robotic limb. From the perspective of neural stimulation,
applications are the entry point of the information to be
transmitted to the brain, like sensory stimuli in prosthesis or
cognitive enhancement. In this section we consider attacks
on applications, without analysing their communication with
external systems, which are addressed in Section IV-A.
Considering the issues of this phase, spoofing attacks over
BCIs have been detected in the literature, where an attacker
creates malicious applications identical to the original and
make them available in app stores [80]. Malware attacks have
also been identified as a threat in BCI [1], [9], [39]. In this
sense, the families of malware applicable to this phase are
the same as detailed in Sections III-C and III-D. In addition,
we have found several opportunities related to cyberattacks
performed against applications. Security misconfiguration is
a type of security weakness that can exist at any level of
the application stack, affecting network services, servers,
platforms, databases, frameworks, virtual machines, containers
or storage [81]. These weaknesses are exploited by a wide
variety of security attacks. However, the detailed analysis
of these concrete attacks is out of the scope of this work,
and only general aspects related to security misconfiguration
attacks are addressed. Buffer Overflow (BO) attacks occur
when it is possible to access out-of-bounds memory spaces
due to insecure software implementations [82]. Concretely,
they take advantage of software operations over memory
buffers, whose boundaries are not well managed, allowing
attackers to read from or write to memory locations placed
before the beginning or after the end of the buffer [83]. This
also derives in the execution of malicious code, the access to
restricted information or even to crash the system [82], [84].
A well-known example of BO is the vulnerability detected
in the implementation of TLS and DTLS in OpenSSL,
where the code uses a number from the input without proper
verification, allowing an attacker to read private keys [85].
Finally, injection attacks occur when the input presented
to an interpreter contains special elements that can modify
how it is parsed. That is, hostile data used as an injection
vector, such as environment variables or parameters, taking
advantage on a lack of verification of the input and therefore
disrupting the separation between the control plane and the
data plane. These vulnerabilities are often found in a large
variety of services, like SQL, NoSQL, LDAP and XPath
queries, format string issues an even OS commands [86], [87].

Considering the impact of the previous attacks, although
applications created by spoofing attacks mainly affect data
integrity, they also have an impact on data confidentiality,
as they can present malicious stimuli to obtain sensitive

neural information, such as specific thoughts or beliefs
[80]. Malware attacks affect the applications integrity by
the alteration of their services and capabilities, such as
disable the encryption of information. In addition, they
can compromise applications confidentiality, gaining access
to sensitive information such as medical records and user
profiles used during neurostimulation treatments. With regard
to the availability of the application, malware attacks can
derive in denial of service over the application, having
impact in processes such as controlling prosthetic limbs or
wheelchairs. In the context of misconfiguration attacks, we
consider that data integrity issues can arise, where attackers
can take advantage of the system to gain unauthorised access.
For example, by exploiting weak access permissions or the
lack of input validation on frameworks used to develop BCI
applications. Data confidentiality issues are also present, for
example, on configuration files that have static predefined
passwords in them, allowing attackers to gain access to
users’ private data. In addition, they can be a consequence
of integrity attacks, as they can derive in leakage of sensitive
information. Applications availability problems are also
possible, as a misconfiguration issue can serve as a first
step to disrupt the normal behaviour of the application.
Several misconfiguration problems have been identified by
the Common Weakness Enumeration (CWE) [88], which
is a community project owned by the MITRE Corporation
[89] that aims to offer an extensive compilation of software
weakness types. BO attacks can derive in the execution of
unauthorised code or commands, where an attacker can alter
the normal functioning of the application or access to sensitive
information [90]. In addition, they can also aim to bypass
protection mechanisms by the execution of code outside the
scope of the program’s security policy. These actions can
affect the data integrity, confidentiality and availability of the
application. Moreover, service availability can be affected by
attacks aiming to crash or exit applications, or by the increase
of CPU and memory consumption [91]. Related to the impact
of injection attacks, they can aim to execute unauthorised
code or commands, affecting the integrity, confidentiality
and availability of the BCI [92], [93]. Focusing on integrity,
they can produce data loss, modification and corruption,
affecting the stability of applications [86], [87]. In terms of
confidentiality, they can produce the disclosure of sensitive
information to unauthorised parties [86], [87], such as
insurance companies aiming to select the best candidates
for their products [80]. Availability can be affected by a
denial of access over an authentication system, disrupting
vital processes such as clinical neurostimulation [86]. In
addition, injection attacks against the OS can also affect
applications, as they allow attackers to gain access over the
system and therefore affect the integrity and confidentiality
of files, directories and application data, as well as disrupt
the availability of the system, producing crash, exit or restart
actions [93]. Moreover, it is important to highlight the impact
of injection attacks over widely extended database systems,
such as SQL or LDAP, that can produce a high degradation



of applications in terms of integrity, confidentiality and
availability [94]. In relation to safety, all these attacks can
force applications to send malicious stimuli or actions that
derive in physical harm [80]. Finally, most APIs to develop
applications offer full access over the information and do not
offer any limitations on the stimuli presented to users, which
generates confidentiality issues [1], [8]–[11], [23].

To mitigate spoofing attacks, it is necessary to verify the
legitimacy of the applications, and ensure a sufficient control
on the app stores [80]. When it comes to malware attacks,
the same countermeasures proposed for the Data processing
& conversion phase are also applied for applications. That
is, the use of antivirus, firewall, IDS and anomaly detection
systems to detect and mitigate the attacks. In addition,
Takabi et al. [10], [49] proposed the use of access control
mechanisms over the information to restrict its access and
thus mitigate confidentiality attacks. They also indicated the
use of randomisation and differential privacy. In addition,
they proposed the integration of homomorphic encryption to
operate with encrypted information combined with functional
encryption to access only to a subset of the information.
We identify as an opportunity for BCI some preventive
actions against misconfiguration attacks defined by the Open
Web Application Security Project (OWASP) [81], such as
the use of minimal platforms with only necessary features,
components, libraries and software to reduce the probability
of misconfiguration issues. In addition, a periodic review and
update of configuration parameters are also positive as part
of the management process of applications. Moreover, it is
necessary to create segmented application architectures that
offer a division between components and defines different
security groups, by the use of Access Control Lists (ACLs).
In relation to BO, in the software requirement phase, it is
important to define a language that protects against BO, such
as Java or Perl, as in C/C++ the developer has direct access
to memory and it is prone to attacks. In addition, some
compilers provide mechanisms that mitigate BO, despite they
can only detect certain types, as well as address sanitation
to detect out-of-bounds accesses. They also usually offer
features to randomly arrange the position of the program and
libraries in memory, which difficult the attacks. However,
these compiler techniques are typically not implemented by
default to improve the efficiency [82]. In the implementation
phase, developers must validate all inputs and follow well
practice rules when using memory (e.g. verification of the
boundaries of buffers). Moreover, sensitive applications must
be run using the lowest privileges possible and even isolated
using sandbox techniques [90], [91], [95]. To detect injection
attacks, both static and dynamic analysis of applications
source code have been proposed, in addition to the automated
testing of parameters, headers, URLs, cookies and data
inputs [86]. Considering countermeasures for these attacks,
it is necessary to escape all special characters included
in the input to avoid attacks as SQL injection [86], [93].
Furthermore, this validation can be extended, assuming that

all input can be malicious and, because of that, the use of
whitelists and blacklists have been proposed, rejecting any
input that does not conform to the requirements specified,
or transforming them into valid inputs. To perform this
validation, all relevant properties must be considered, such
as length, type of input or syntax [92]. In addition, the use
of safe languages and APIs that include these mechanisms
releases developers to perform these validations manually
and reduces the probability of errors [86], [87]. Focusing on
attacks on the OS, the CWE identifies several solutions. First,
the use of sandbox techniques to define strict boundaries
between processes and the OS [93]. In addition, the definition
of different permissions on the system and thus prevent
access over privileged files [92]. Moreover, error messages
must contain minimal but descriptive details, ensuring that
there is no leakage of sensitive information.

IV. CYBERSECURITY ISSUES AFFECTING THE BCI
DEPLOYMENTS

This section reviews the different architectural deployments
of the BCI cycle found in the literature. After that we group
them in two main families, which are characterised by the
BCI cycle implementation and its application scenario. In
contrast to Section III, where the cybersecurity analysis
is independent of the deployment, this section reviews
the state of the art of existing cyberattacks affecting the
devices implementing each phase of the BCI cycle, as well
as their impacts and countermeasures. New opportunities,
in terms of cyberattacks and countermeasures, missed by
the literature are also highlighted in this section. Fig. 10
represents both architectural deployments defined, Local
BCIs and Global BCIs, indicating the communication
between their elements and the phases of the BCI cycle that
each element implements according to the type of deployment.

A. Local BCI

Local BCI deployments are characterised by managing the
neural acquisition and stimulation processes of single users.
This architecture typically deploys the BCI phases between
two physical devices, as represented in Fig. 10. The first one,
identified as BCI device, focuses on neural acquisition and
stimulation procedures (phase 1 of the BCI cycle), whereas
BCI applications (phase 5) are executed by a Near Control
Device (NCD), which is a PC or smartphone that controls the
BCI device using either a wired or wireless communication
link. The phases 3 and 4 of the cycle can be implemented
equally in both devices, being the final decision made by
manufacturers. At this point, it is important to note that
alternative designs can arise due to specific requirements of
the deployments, such as the presence of multiple users.

This kind of architectural deployment is the most commonly
implemented for consumer-grade BCI, where commercial
brands like NeuroSky or Emotiv focus on scenarios such
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Fig. 10. Representation of Local BCI and Global BCI deployments, indicating the communication between their elements and the stages of the BCI cycle
that each element implements according to the architectural deployment.

as gaming and entertainment [8], [25], [27]. Neuromedical
scenarios also use this approach, where the acquisition and
stimulation processes are managed by an NCD placed in
the clinical environment. This section specifically addresses
the issues detected in physical BCI devices, the inherent
problems of the NCD and those related to the communication
between BCI and NCD. At this point, it is important to note
that the attacks, impacts and countermeasures detected for
the BCI cycle are also applicable.

From the cyberattacks perspective and focusing on BCI
devices, Ballarin et al. [80] identified attacks affecting
the device firmware throw a configuration link (e.g. USB
ports), having an impact on data integrity and confidentiality,
also generating disruptions on the system. Moreover, we
identify that they can serve as an opportunity for attackers
to generate safety problems. Ienca et al. [6], [7] documented
cryptographic attacks, indicating that the Cody’s Emokit
project was able to crack the encryption of data directly from
the Emotiv EPOC, a consumer-grade BCI. They detected
that these attacks affect data integrity and confidentiality. In
addition, we identify that they produce service availability
and safety issues if they are able to modify the data. Besides,
Camara et al. [70] highlighted that attackers can focus on
draining the battery of IMDs and thus affect both service
availability and users physical safety. Considering NCDs,
Ballarin et al. [80] identified social engineering and phishing
attacks focused on the acquisition of users’ authentication
credentials, affecting data confidentiality. Although BCI
applications do not require a connection to the Internet,
the NCD can be connected. Therefore, we detect that
these systems can suffer malware attacks and, specifically,
ransomware [96] and those based on botnets [65], [66], [97],
with an impact on the integrity and availability of data and

applications contained in the NCD, as well as users’ safety.
In particular, botnets also generate data confidentiality issues,
since attackers have control over the system. Moreover,
we detect sniffing attacks on NCDs taking advantage of
networking configuration and protocols, such as MAC
flooding, DHCP attacks, ARP spoofing or DNS poisoning
[98], affecting service and data integrity, confidentiality
and availability. Focusing on the communication between
BCI devices and NCDs, Sundararajan et al. [11] studied
the security of the commercial-grade Emotiv Insight, which
implemented Bluetooth Low Energy (BLE) in its version
4.0 to communicate with a smartphone that contains the
application offered by Emotiv. They successfully performed
man-in-the-middle attacks over the BLE link, being able
to intercept and modify information, force the BCI to
perform unwanted tasks and conduct replay attacks affecting,
therefore, integrity, confidentiality and availability of sensitive
data. Further integrity impacts have been documented in the
literature, where attackers can intercept and modify sensitive
data even when encryption is used [1], [11], [49], [80]. These
attacks are related with the cryptographic attacks described
above, where a weak encryption of the data stored in the
device can derive in man-in-the-middle attacks. Finally, it is
important to note that the attacks related to user data and
credentials will have a higher impact if the system is used by
multiple users.

With the goal of mitigating some of the previous
cyberattacks, different countermeasures have been proposed.
Related to firmware attacks, Ballarin et al. [80] proposed
the encryption of the firmware, as well as an authenticity
verification throw hash or signature. Camara et al. [70]
proposed the use of access control mechanisms placed
in external devices, anomaly detection systems and user



notification mechanisms to face battery drain attacks. In
addition, the use of strong cryptographic mechanisms
and the latest protocol versions is determinant to avoid
cryptographic attacks, man-in-the-middle attacks and
sniffing attacks [11], [80]. In addition, the anonymisation
of the information transmitted by the BCI to the NCD
has also been recommended against attacks that have an
impact on confidentiality; for example, by the use of the
BCI Anonymiser [9], [39], [49]. Social engineering and
phishing attacks focused on credential theft can be reduced
implementing a double authentication factor to access the
BCI and proper access control mechanisms [10], [80].
General malware threats having impacts on NCDs can be
evaded applying the malware countermeasures indicated in
Section III-C, updating all software to the latest version
and implementing periodic backup plans. Moreover, the
use of ML techniques, as proposed by Fernández-Maimó et
al. [99] for Medical Cyber-Physical Systems (MCPS), can
also be used in this context to detect, classify and mitigate
ransomware attacks. With regard to botnets, a wide variety
of detection techniques have been detected by us for the
BCI field, like the use of anomaly detection based on ML
and signatures, the quarantine of infected devices and the
interruption of certain communication flows [?], [100], [101].
Finally, we consider that the recommendations of the U.S.
Food and Drug Administration (FDA) for premarket and
postmarket management of cybersecurity in medical devices
should be considered in the context of BCI [102]–[104].

B. Global BCI

Global BCI architectures are focused on the management of
neural acquisition and stimulation of multiple users through
an Internet connection. This architecture considers three
devices to deploy the phases making up the BCI cycle, as
can be seen in Fig. 10. In this family, the BCI device remains
focused on neural acquisition and stimulation (phase 2),
whereas the NCD is in charge of the execution of applications
(phase 5), as well as conversion and processing actions (phase
3). Finally, the new element introduced in this architecture
is the Remote Control Device (RCD), which represents one
or more external resources or services accessible via the
Internet, such as cloud computing and storage. It typically
implements phases 4 and 5 of the BCI cycle, as it has the
resources to run more complex applications and information
analysis. The main difference between this architecture and
the one described for Local BCIs in Section IV-A is that,
in Local BCIs, the NCD does not send user information to
external services (e.g cloud). Finally, this section focuses on
the problems associated with the communication between
NCD and RCD, and the BCI-related attacks that can be
applied to RCDs. However, these later attacks are addressed
in a general way, as specific cloud computing attacks are
outside the scope of this article.

This architectural deployment is the most innovative, as it
allows the communication of multiples users with external
services and the creation of complex deployments, where the
data and information of every user is stored and managed
in a common infrastructure. Several application scenarios
have been detected in the literature using this architecture,
whose temporal evolution is addressed in more detail in
Section V. On the one hand, Zhang et al. [105] defined
the concept of the Internet of Brain, also known as BtI,
where the BCI uses an NCD to access Internet services,
such as search results or social media. Lebedev et al. [18]
also described experiments where monkeys controlled remote
robotic arms using BCI devices. In addition, Martins et al.
[106] documented a fusion between neuralnanorobotics and
cloud services to acquire knowledge, defining the concept of
Human Brain/Cloud Interface (B/CI). On the other hand, BtB
allows multiple individuals to exchange neural information,
using both neural recording and stimulation procedures [18].
Pais-Vieira et al. [13] documented the real-time exchange
of information between the brain of two rats. Rao et al.
[107] deployed this architecture in the context of BtB
communication applied to video games, where a participant
imagined hand movements that where transmitted over the
Internet to a second participant neurally stimulated to press
the control to shoot. Jiang et al. [16] evolved this idea,
developing a collaborative communication between brains to
perform movements in a Tetris-like game. A specific type
of BtB communication is a Brainet, based on a network of
multiple interconnected brains to achieve a common goal,
as defined by Pais-Vieira et al. [15], who established a
neural communication between multiple rats. They can be
used to transmit neural information between the participants,
allowing distributed and parallel computing architectures.
Ramakrishnan et al. [108] used the concept of Brainets in
monkeys, where they collaborated to move an avatar arm
with their neural activity. At this point, it is important to
highlight that a Brainet can also be implemented in a Local
BCI architecture, without an Internet connection. From the
commercial point of view, Emotiv allows users to contrast
their data with the data stored by other users, as well as
keep user neural recordings in the cloud to visualise and
manipulate them, also offering an API called Emotiv Cortex
[109].

Considering the attacks on this deployment, the issues
documented in Section IV-A for Local BCIs are also
applicable in this architecture. However, Global BCIs present
higher risks, since these deployments are an opportunity for
remote attacks against interconnected BCI devices, which
derives in physical harm for their users. In addition, Takabi
et al. [10] detected that BCI applications can send raw brain
signals to cloud services that execute ML techniques to extract
sensitive information and therefore affect confidentiality. We
identify that this problem can also be present in Local BCIs
if the NCD has an Internet connection. Ballarin et al. [80]
identified that man-in-the-middle attacks can occur in the



communication channel between NCD and RCD, affecting the
integrity, confidentiality of the data transmitted and the service
availability. They also detected that attacks on RCDs can
have a higher impact on confidentiality than on Local BCIs,
as these platforms store sensitive information from multiple
users, that can be stolen or sold to third parties. On the
other hand, we identify that this architecture is quite similar
to those defined and implemented for IoT scenarios, where
constrained devices communicate with external services via
intermediate systems, especially in the case of Brainets, where
multiple devices interact between them. Because of that, we
detect that most of the cybersecurity attacks and impacts
defined by Stellios et al. [110] are also applicable in this
architecture. Moreover, we consider that the issues highlighted
by the OWASP in their IoT projects are critical aspects of
Global BCIs [111]. This relationship between IoT and
external services has been previously studied in the context
of cloud computing [112]. Despite the advantages, attacks
on cloud computing can impact integrity, confidentiality and
availability in different levels of the cloud architecture, such
as infrastructure, networking, storage and software [113],
[114]. The evolution of NCDs derives in mobile devices
with higher computing capabilities, integrated into mobile
cloud computing systems. However, they also have an impact
on the security of deployments [115]. We also detect that
the improvement of NCDs capabilities can also allow the
introduction of fog computing in Global BCIs, where NCDs
perform part of the computation, generating new security and
trust issues [116]–[118]. Malware attacks are also present
in cloud environments, where ransomware and botnets are
common threats [114]. Focusing on general cloud computing
countermeasures, Amara et al. [119] identified security threats
and attacks, as well as the mitigation techniques against them.
The use of honeypots, firewalls and IDS in cloud scenarios
can be used to reduce the impact of malware attacks [117].

Fig. 11 summarises the previous attacks, impacts and coun-
termeasures. This figure first shows the list of attacks consid-
ered in this section, associated with a unique icon, where those
attacks with references indicate that they have been detected
in the literature, while those without references represent our
contribution. After that, we show the impacts that generate the
previous attacks, organised by category. For each impact, we
indicate the specific attacks that cause the impact, and which
elements of the architectural deployments presented in Fig. 10
are affected. In addition, the issues on the communication
links between these elements are considered. Specifically, the
attacks and elements identified in red represent issues detected
in the literature, whereas those in blue are our contribution.
Finally, this figure lists countermeasures detected both in the
literature and by us, associating each attack with a list of
countermeasures. The colour and reference criteria used before
for the impacts also applies for the countermeasures, where an
attack represented with a particular colour indicates that all
their countermeasures have the same colour.

V. BCI TRENDS AND CHALLENGES

One of the first BCI solutions was developed at the end
of the 1990s. It supposed a major advance in the medical
industry, specifically in neurorehabilitation, bringing to the
reality the mental control of prosthetic limbs and wheelchairs
[120]. During the decade of the 2000s, a new generation of
neuroprosthetic devices was designed to restore the mobility
of patients severely paralysed, creating communication links
between the brain and a wide variety of actuators, such
as robotic exoskeletons [18]. This trend in the BCI field
derived in new paradigms and scenarios in the decade of
the 2010s, where BCIs interact with external networks and
services defining the concept of BtI [50], [105]. In addition,
bidirectional BCIs were defined, where acquisition and
stimulation procedures are used together to acquire brain
activity and deliver feedback to the brain or peripheral nerves.
This allowed the creation of direct communications between
two brains, known as BtB [13], [14]. These systems have also
been extended to create networks of interconnected brains,
known as Brainet, which can perform collaborative tasks
between users and share knowledge, memories or thoughts
through remote brains [15], [16]. Fig. 12 illustrates this
evolution of the literature, indicating the years of publication
and approaches.

The BCI research field has gained relevance in the last few
years, where different governments have funded and promoted
BCI initiatives. In the United States of America, the DARPA
is supporting the BRAIN Initiative (Brain Research through
Advancing Innovative Neurotechnologies) [121]. Canada, has
launched its own research line, called the Canadian Brain
Research Strategy [122], [123]. On the other side of the At-
lantic ocean, the European Union has also supported different
projects, such as the Human Brain Project (HBP) [124] or
the Brain/Neural Computer Interaction (BNCI) project [125],
[126]. Asia has also promoted several initiatives such as the
China Brain Project [127] or the Brain/MINDS project in
Japan [128]. All the previous initiatives and projects aim to
advance the understanding of the human brain by the use of
innovative technologies. As a consequence, emerging tech-
nologies offer precise acquisition and stimulation capabilities
that enable novel BCI application scenarios. The common
interest in the study of the human brain and, in particular, on
BCI, leads to new opportunities for manufacturers, who can
increase their competitiveness producing revolutionary BCI
services based on growing paradigms such as the IoT, cloud
computing and big data. This derives in the improvement of
the usability, accuracy and safety of the products, together
with their expansion to non-medical economic sectors such
as entertainment. The result of the above is a trend of BCI
towards Global BCI architecture deployments, where multiple
BCI devices can communicate between them to perform
collaborative tasks, based on the approaches of BtI, BtB and
Brainet. Once summarised the evolution of BCI and its trend,
below we highlight the most important current and future
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in red represent information detected in the literature, while the blue colour represents our contribution.



challenges concerning cybersecurity on BCI.

A. Interoperability between BCI deployments

Existing BCI deployments consider isolated devices without
standards to provide interoperability in terms of communica-
tion and data representation. This is the case of commercial
BCI brands and devices, which have been designed to resolve
particular problems and are not compatible between them
[12]. Moreover, deployments integrating the communication
between several BCIs are ad-hoc; that is, they are designed and
implemented considering only the requirements of a particular
scenario. In this context, the current trend of BCI towards
paradigms such as the IoT and cloud computing will require
an improvement of their interoperability, as it is essential to
ensure the future expansion of BCI technologies. In addition,
the lack of interoperability limits the definition of general
cybersecurity systems and mechanisms that can be applied.
In this sense, current BCI solutions are device-oriented and
do not offer collaborative mechanisms against cyberattacks.
We detect as a future opportunity the use of well-known
standardised APIs, communication technologies and protocols
to offer seamless protection on BCI. Based on the previous
limitations, we propose the use of ontologies to represent neu-
ral information in a formal and standardised fashion. Because
of that, different companies and products would use a common
representation to ease the data interpretation, processing and
sharing. This homogenisation would have a positive impact
on cybersecurity, enabling the design and deployment of new
protocols and mechanism enabling the secure exchange of
particular pieces of sensitive data between independent BCI
solutions.

B. Extensibility of BCI designs

Extensibility refers to the ability of BCIs to add new
functionality and application scenarios in a dynamic way.
Nowadays, BCI devices suffer a lack of extensibility , as
they are manufactured to provide particular services on fixed
application scenarios. The neural data processing is performed
in a fixed way and according to predefined premises. It
means that each layer making up BCI architectures performs
particular processing tasks, which can not be changed or even
modified on-demand [11]. Since each application scenario
has its own requirements and restrictions, the trend towards
Global BCI will need new automatic and flexible architectures
and processing mechanisms over the acquired neural data.
These aspects also affect the cybersecurity solutions that can
be applied, since current constraints of BCI systems prevent
the use of reactive and adaptive defensive mechanisms to
face the threats described in previous sections. Because of
that, and in conjunction with a lack of interoperability, the
cybersecurity responsibilities of each phase of the architecture
are predefined and cannot be extended within that element or
delegated to be performed in other systems. As a future line of
work, we highlight the design of BCI deployments that allow
the implementation of most of the operations performed in
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software, instead of hardware, allowing developers to change
the behaviour of the system. Another possible solution is
a modular design of BCI, including supplementary modules
according to the requirements.

C. Data protection

Current BCI architectures and deployments do not consider
the protection of neural data and personal information, as
detected in the literature [12], [49], [50]. Users do not have
control over their privacy preferences to define who has access
to the information and in which particular circumstances.
Because of that, there are no specific privacy regulations
to ensure that applications and external services can access
only to the neural information accepted by users, nor any
limitation on manufacturers or third-parties to prevent the
processing of sensitive neural data without users authori-
sation. The evolution of BCI towards distributed scenarios
with heterogeneous and ubiquitous characteristics, such as
BtB approaches, will require the storage and management of
multiple users personal and sensitive data. Because of that,
future deployments should ensure that this critical information
is transmitted and processed in a secure way. To improve
this situation, we propose the development of policy-based
solutions that allow users to define their privacy preferences
based on their particular context. In addition, we propose the
use of user-friendly systems that also help users proposing
privacy-preserving recommendations. These initiatives must be
also aligned with the data protection law applicable in each
country.

D. Physical and architectural BCI threats

Nowadays, BCI designs and deployments do not consider
cybersecurity issues such as the protection of communications,
processing, storage and applications. In addition, the lack
of BCI standards and, specifically, cybersecurity standards,
prevent the homogenisation of the implemented solutions [9]–
[12]. The expansion of BCI solutions will require robust
dynamic cybersecurity mechanisms to face future challenges.
Moreover, the development of more precise BCI devices,
together with the integration of a large number of devices and
systems, will derive in massive production of sensitive data. In
our opinion, this context will benefit the increase of vulnerable
systems and communication links. To address these challenges,
manufacturers should evaluate alternatives for the mitigation of
cyberattacks from multiple perspectives, aiming to implement
seamless cybersecurity solutions. Based on that, we propose
the use of 5G network technologies, since they have been
designed to support a great number of devices, necessary
for BtB and Brainet scenarios. Specifically, we identify that
techniques and paradigms associated with 5G such as Network
Function Virtualisation (NFV) and Software-Defined Network-
ing (SDN) for the virtualisation and dynamic management of
network communications are useful for the development of
reactive cybersecurity solutions. In addition, technologies such
as Blockchain can provide the tracking of the information
and ensure that it has not been modified, guaranteeing the

integrity of the data. Moreover, we identify the protection of
network communications by the use of protocols such as TLS
[129] or IPsec [130] as an opportunity, which offers robust
mechanisms against cyberattacks. On the other hand, we detect
that the application of cybersecurity standards such as the ISO
27000 [131] and the NIST Cybersecurity Framework [132]
will benefit the creation of homogeneous solutions. Finally,
the exchange of information between medical systems can be
accomplished using well-known standards, as is the case of
the HL7 standard [133].

VI. CONCLUSION

This article performs a global and comprehensive analysis
of the state of the art of BCIs in terms of cybersecurity
and safety. Particularly, we have evaluated the risks, attacks,
impacts and countermeasures that BCI solutions suffer
from the classification, software architectural design, and
implementation perspectives. Initially, we have performed an
analysis of the cybersecurity risks and concerns of the most
well-known BCI classifications, where we have seen that,
although some risks have been identified in the literature,
most of the contributions are our own. This analysis of the
classifications has been useful to detect which BCI families
are more sensitive, and where future cybersecurity works can
focus. After that, we proposed a unified version of the BCI
cycle to include neural acquisition and stimulation processes.
Once having a homogeneous BCI cycle design, we identified
cybersecurity attacks, impacts and countermeasures affecting
each phase of the cycle. It served as a starting point to
determine which processes and functioning stages of BCIs
are more prone to attacks. The architectural deployments of
current BCI solutions have also been analysed to highlight
the cybersecurity attacks and countermeasures related to each
approach and thus understand the cybersecurity issues of these
technologies in terms of network communications. Finally, we
provide our vision regarding BCI trends and depict that the
current evolution of BCIs towards interconnected devices is
generating tremendous cybersecurity concerns and challenges,
which will increase in the near future.

Among the learned lessons, we highlight the following nine:
(1) reactive BCIs are especially sensitive against malicious
external stimuli; (2) the technology used for developing
BCI solutions have a high impact on cybersecurity; (3)
the greater is the invasiveness of BCIs, the greater are
their risks in terms of users safety and data availability
and confidentiality; (4) there are no previous works in the
literature that define a unified version of the BCI cycle for
neural stimulation or bidirectional BCIs; (5) there is a lack
of comprehensive proposals to analyse the cybersecurity
issues of BCIs from a wide perspective, since the number
of attacks and countermeasures described in the literature
is very reduced; (6) user adversarial attacks are the most
commonly studied attacks against neural data acquisition; (7)
attacks against BCIs devices have been widely documented;
(8) NCD devices are specially sensitive, as they are the direct



point of communication with BCIs; (9) no publications have
reviewed the impacts that attacks against RCDs have on BCI
deployments.

As future work, we plan to focus our efforts on the design
and implementation of solutions able to detect and mitigate
in real time cyberattacks affecting the stimulation process. In
this context, we are considering the use of artificial intelligence
techniques to detect anomalies in the firing patterns and neural
activity controlled by BCI solutions in charge of stimulating
the brain. In addition, we also plan to contribute by improving
the interoperability and data protection mechanisms of existing
BCI architectures. Finally, another future work is the devel-
opment of dynamic and proactive systems as an opportunity
to mitigate the impacts of the cyberattacks documented in this
work.
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